43 research outputs found

    MacWilliams' Extension Theorem for Bi-Invariant Weights over Finite Principal Ideal Rings

    Full text link
    A finite ring R and a weight w on R satisfy the Extension Property if every R-linear w-isometry between two R-linear codes in R^n extends to a monomial transformation of R^n that preserves w. MacWilliams proved that finite fields with the Hamming weight satisfy the Extension Property. It is known that finite Frobenius rings with either the Hamming weight or the homogeneous weight satisfy the Extension Property. Conversely, if a finite ring with the Hamming or homogeneous weight satisfies the Extension Property, then the ring is Frobenius. This paper addresses the question of a characterization of all bi-invariant weights on a finite ring that satisfy the Extension Property. Having solved this question in previous papers for all direct products of finite chain rings and for matrix rings, we have now arrived at a characterization of these weights for finite principal ideal rings, which form a large subclass of the finite Frobenius rings. We do not assume commutativity of the rings in question.Comment: 12 page

    Bounds for Coding Theory over Rings

    Full text link
    Coding theory where the alphabet is identified with the elements of a ring or a module has become an important research topic over the last 30 years. It has been well established that, with the generalization of the algebraic structure to rings, there is a need to also generalize the underlying metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight. Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4 and as a generalization of Krotov’s weight over the integers modulo 2s for any positive integer s. For this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight, we also study a well-known metric on finite rings, namely the homogeneous metric, which also extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight. We provide a new bound that has been missing in the literature for homogeneous metric, namely the Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all distinct codewords that depends only on the length, the average weight and the maximum weight of a codeword. An effective such bound is not known for the overweight
    corecore